
Using Sensors in your 
FTC Robot

09/07/2019

Overview of this Presentation
• What sensors are and why we use them

• Types of sensors and what they do

• Hardware connections for sensors

• Configuring sensors in your software

• Best practices for sensor use

• Advanced Topics

Sensors
Sensors measure something about the physical world and put this

information into a useful form for your robot’s software.

Am I touching the wall?

Am I holding a game piece?

What color is the block?

How far have I driven?

Is my grabber fully deployed?

How fast is the flywheel spinning?

Have I crossed the white line?
Have I turned 90 degrees yet?

How far away is the scoring zone?
* not a representative FTC robot

Can I see the navigation target?
Is the battery voltage too low?

What can sensors measure?

• Distance traveled

• Proximity to a target

• Rotation speed of a shaft

• Angles of levers

• Status of robot mechanisms

• Physical forces (acceleration,
compass heading)

• Light & Vision

• Passage of Time

Lots of stuff!

Common FTC Sensors
Distance Proximity Physical Advanced

Motor Encoders IR Distance
Sensor Touch Sensor Camera

Ultrasonic
Sensor

Accelerometer,
Gyroscope

Touch Sensor Color

Potentiometer

Motor Encoders
• Probably the most useful FTC sensor for robot odometry.

• Use these in your drivetrain to drive precise distances

• Use in your manipulators, elevators, grabbers

• Motor encoders measure relative distances.

• In other words, encoders can only tell you how far you’ve gone from some
starting point.

• The Rev Expansion hubs have software to help you coordinate motors and
encoders.

Most common FTC Sensors

• Motor Encoders

• IMU (Accelerometer & Gyroscope)

• Touch Sensor

• Color Sensor

The Most Common FTC Sensors
Sensor Type Common Usage

Motor Encoder Counts shaft rotations, can measure distance robot has traveled, amount
of elevator lift, or winch windings, speed of flywheel

Accelerometer/
Gyroscope Measures robot’s compass heading, tilt of robot on any axis.

Touch Sensor,
Magnetic Limit

Can detect robot touching a surface
Mechanism in a particular state (intake in, game piece acquired, etc).

IR Distance,
Ultrasonic Can measure absolute distances to a target, usually a wall or surface

Color Sensor Can provide rudimentary color information of a very nearby object. Can
detect navigation tapes on the field floor.

Camera Advanced Sensor. Can identify objects in captured images.

Motor Encoders
• Most common FTC sensor

• Built-in to most Andymark and Rev motors

• Andymark Neverest, Rev Core Hex, Rev HD Hex.

• Measures the rotation of the motor’s shaft.

• Note that this is not the output shaft.

• You must consider the gear reduction to get
correct measurements!

Enc
od

er

Motor Encoders

• Read the Specifications!
• Rev conveniently does part of the math for you.
• For example, each full rotation of a 40:1 motor is 1120 pulses.
• These pulses are the same values you will see in software.

So… how do we know how far our robot has driven?

Motor Encoders - more math!

Wheel

Motor
Gearbox

Chain or Belt
 to Wheel

Motor

Encoder Measures
Rotations Here

• Consider:
• 40:1 Rev Motor

• (1120 pulses per output shaft
rotation)

• 2:1 reduction in chain
• (1120 * 2 = 2240 pulses per wheel

rotation)

• 3” wheel diameter
• (Pi * 3.0 = distance per rotation)
• 9.42” circumference

Pulses/Inch = 2240 PPR / 9.42” = 237

How many pulses would you measure if robot moved 5”?

Encoder Sensors are Special

• The Rev hub can automatically control motors using the
corresponding encoders.

• Software can specify the distance, speed, or power and the
expansion hub will control the motor for you, using data from the
encoder.

• This is sometimes called “encoder drive”

The Rev Expansion Hub

Color Sensors
Advanced Sensors

Analog Sensors

Touch Sensors

Motor Encoders

The Rev Guides
Go to: http://www.revrobotics.com/resources/

Sensor Connections (Rev)
• If you use all Rev motors and sensors,

hookup is easy.

• Use supplied JST cables or
fabricate equivalent ones

• Connect to available port based on
sensor type

• The accelerometer/gyro is built into
your expansion hub, no
connections needed!

Touch
Sensor

Potenti-
ometer

Distance
Sensor

Magnetic
Switch

Color
Sensor Encoder

Digital
Port

Analog
Port I2C Port Digital

Port I2C Port
Motor

Encoder
Port

1 or 0 0.0 to 1.0
(double)

Distance
in cm 1 or 0 R,G,B

(double)
32-bit
integer

Andymark Motor Encoders

• Rev level shifter must be installed (REV-31-1389)
• Andymark encoders are 5V, Expansion hub is 3.3V

(not needed if you use Rev motors)

Using Non-Rev Sensors
• Diagram colors correspond to

wire colors on standard Rev
cables

• Cut a Rev sensor wire to attach
non-Rev sensors

• DO NOT SHORT 3.3V+GND
TOGETHER! IT CAN DESTROY
YOUR EXPANSION HUB!

Mechanical Switches

Connect ‘COM’ to black wire

Connect ‘NO’ to either white or blue wire

Standard 4-pin Rev sensor cable
cut in half

INSULATE THE RED WIRE,
DO NOT ALLOW IT TO SHORT

Sensor will read 0 if switch is pressed, 1 if switch is released

Potentiometers
Also known as : “Variable Resistors”

Standard 4-pin Rev sensor cable
cut in half

One end terminal: Black

The other end terminal: RedMiddle terminal, called
the “wiper”: Blue or White

• Good for measuring the angle of a mechanism
• Shaft usually turns about 270 degrees

Shaft

I2C Sensors
• Rev Hub supports only 3.3v Sensors

• However, all Rev-branded sensors are 3.3v!

• Use a Rev level shifter module if you use a non-Rev sensor

• I2C Sensors have addresses. This means there’s a unique number
that identifies a specific sensor attached to an expansion port

• This address will appear in your software.

Configuring Sensors on RC

Sensor
Interfaces

Analog
Sensors

Digital
Sensors

I2C
Sensors

Adding Sensors to Software

• Each sensor type has a unique Java class

• See FTC SDK documentation for a complete list!

• Create the object by looking up sensor in the hardware map.

• Later in your code, use this object to read the sensor.

• Methods for each sensor type are also in the SDK documentation

Read the docs!

• Documentation is in your SDK
• Open doc/javadoc/index.html in

your web browser

Java Classes for Sensors
Rev Touch Rev Mag

Limit Rev IMU Potenti-
ometer

Rev 2M
Distance Rev Color V2

Java
Import

rev.RevTouchSe
nsor

rev.RevTouchSe
nsor

bosch.BNO055IM
U

hardware.Analo
gInput

rev.Rev2mDista
nceSensor

hardware.Analo
gInput

Java
Class TouchSensor TouchSensor BNO055IMU AnalogInput Rev2mDistance

Sensor ColorSensor

Expansion
Port Digital Digital I2C Analog I2C I2C

Sensor Type Rev Touch
Sensor

Rev Touch
Sensor

Rev Expansion
Hub IMU Analog Input Rev 2M

Distance Sensor
Rev Color/Range

Sensor

Four Steps
Connect the

sensor to your
robot’s expansion

hub

Name your sensor
in the robot

controller phone

In your robot init
code, create the

sensor object
using the same

name

In teleop or
autonomous

code, use the
object to access

the sensor

Declare sensor object
Create object from hardware map

Access sensor data

Robot Init Code

Teleop/Autonomous

Sensor Noise

• Sensors are not perfect!

• Occasionally you may get readings that
make no sense

• Color sensors occasionally return
unusual values

• Gyros suffer from drift.

• Distance sensors may seem out of range

• Even touch sensors bounce while the
mechanical switch settles.

• Exception: Encoders are usually noise-free

• For analog sensors, average
several recent readings

• Discard obvious outliers.

• For digital sensors, read until you
get the same value a few times in
a row

Problems You May See Things to Try

Absolute vs Relative Sensors

• Returns a specific reading based on the
current physical world (will generally be
the same reading after robot is
restarted)

• Distance Sensor

• Color Sensor

• Touch Sensor

• Potentiometer

• Returns a value representing a change from
a previous reading

• Encoder. You don’t really know where
the robot was at the previous reading.
FTC robots typically want to know the
distance from some previous reading.

• Gyro. Although it returns the absolute
compass heading, this information is not
very useful. FTC robots want to know the
changes in the heading.

Absolute Relative

Sensor Characterization

• Make a test program

• Log sensor data to a file

• Write sensor data to telemetry

• Test sensors, particularly analog,
color, distance, gyro

• Understand the measurements.

• Observe and filter noise

Test your sensors!

Touch
Sensor

Potenti-
ometer

Distance
Sensor

Magnetic
Switch

Color
Sensor IMU

Switch
Bounce

Noise, out
of range

Noise,
out of
range

Switch
Bounce

Noise from
External

lights

Compass
drift

Read
multiple
times

Average
recent

readings

Average
recent

readings

Read
multiple
times

Pre-
measure
targets

Initialize
Sensor

properly

Rev Hub Interface
Test your sensors without a robot controller, using a Windows PC

Sensor Latency
• Sensor readings are not instantaneous!

• A sensor doesn’t tell you what is
happening now, it tells you what
happened in the recent past.

• Reading sensors in a tight loop will
slow other things down

• Taking multiple measurements slows
things down further

• I2C sensors are the slowest to read,
including the gyro

Read
Sensor

Command
Motor

50ms

50ms

If a wheel is turning at 20RPM (0.33/sec),
it completes a rotation every 330ms.
By the time you can stop the motor, the
wheel has made 1/3 extra turn!

* examples for illustration, not real latencies

Special Consideration: Gyro
Import the Rev gyro as a Bosch BNO055IMU

You must initialize this sensor!

The compass heading’s method isn’t obvious…

Special Consideration: Encoder
The encoder is actually part of the DCMotor class.

The getPosition() method reads the current encoder count.
The setMode() method enables encoder modes.

DcMotor.RunMode Purpose

STOP_AND_RESET_ENCODER Stop motor & reset position to 0

RUN_TO_POSITION Motor will run at specified power until encoder
reaches a given position.

RUN_USING_ENCODER Motor will attempt to hold a constant speed using the
encoder.

RUN_WITHOUT_ENCODER Motor is run without using the encoder.

Questions?

